US009100933B2

a2 United States Patent 10) Patent No.: US 9,100,933 B2
Takeda et al. 45) Date of Patent: *Aug. 4, 2015
(54) APPLICATION LEVEL BROADCAST IN PEER USPC ottt 709/223
OVERLAY NETWORK See application file for complete search history.
(71) Applicant: Sony Computer Entertainment Inc., .
Tokyo (JP) (56) References Cited
(72) Inventors: Yutaka Takeda, San Mateo, CA (US); U.S. PATENT DOCUMENTS
Steven Thomas, Santa Clara, CA (US); 5117420 A 51992 Hillis ef al
73) Assi S C E L 7,468,952 B2 12/2008 Takeda
ssignee: Sony Computer Entertainment Inc., .
(73) & Tok})llo (JP)p (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 A.Rowstron et al., “Pastry: Scalable, Decentralized Obhect Location
U.S.C. 154(b) by O days. and Routing for Large-Scale Peer-To-Peer Systems”, IFIPJACM
This patent is subject to a terminal dis- International Conference on Distributed Systems Platforms
claimer. (Middleware), Heidelberg, Germany, Nov. 2001.
(Continued)
(21) Appl. No.: 14/025,487
(22) Filed: Sep. 12, 2013 Primary Examiner — Krisna Lim
(74) Attorney, Agent, or Firm — Joshua D. Isenberg; JDI
(65) Prior Publication Data Patent
US 2014/0169254 A1 Jun. 19, 2014
Related U.S. Application Data 67 ABSTRACT
(62) Division of application No. 12/757,911, filed on Apr. A broadcast message may be igitiated or r.eceived.at a peer
9, 2010, now Pat. No. 8,549,126. node. The node obtains an uplink bandwidth available for
broadcasting the message over the network and a number of
(51) Int.CL copies that can be broadcast based on the available band-
GOG6F 15/177 (2006.01) width. The node determines a range of key values for finger
HO4W 72/00 (2009.01) nodes that should receive copies of the broadcast message
(Continued) from a finger table. The finger table entries include references
to finger nodes and key values associated with the finger
(52) US.CL nodes. The node determines which other nodes should receive
CPC ... Ho4Ww 72/005 (2013.01); HO4L 67/1053 copies of the broadcast message from range of key values and
(2013.01); HO4L 67/1065 (2013.01); HO4W the number of copies. The node also determines an End ID for
84/18 (2013.01); HO4L 67/1093 (2013.01); each recipient node. A copy of the broadcast message and
(Continued) corresponding End ID is sent to a finger node if the finger
(53) Field of Classification Search glojg ;dk?]% .Value is within a range of key values specified by
CPCcccc... HO4W 72/005; HO4W 84/18; HO4L

67/1053; HO4L 67/1065; HO4L 67/1093;
HO04M 2203/205; H04M 2203/4545

200 302

GENERATE OR RECEIVE
BROADCAST MESSAGE
(Optional)

11 Claims, 11 Drawing Sheets

OBTAIN AVAILABLE
UPLINK BANDWIDTH

304

FINGER
TABLE

DETERMINE NUMBER OF
308—~_| COPIES TO SEND BASED
ON AVAILABLE UPLINK

BANDWIDT!

1.2.4,8,
18

H

310—_|

DETERMINE RECEIPIENTS.
AND END ID's USING
FINGER TABLE AND

NUMBER OF COPIES TO
END

s
312 SEND COPIES AND END
ID's TO RECEIPIENTS
301

£
O

204

o4

US 9,100,933 B2

Page 2
(51) Int.ClL 2009/0083433 Al 3/2009 Liu
HO04W 84/18 2009.01 2009/0086739 Al 4/2009 Takeda et al.
HO4L 29/08 (2006 01) 2009/0144424 Al 6/2009 Takeda et al.
(2006.01) 2010/0165830 Al 7/2010 Amir et al.
(52) U.S.CL 2010/0205481 Al 8/2010 Zheng
. 2011/0252122 Al 10/2011 Takeda et al.
CPC . H04M 2203/205 (2013.01); HO4M 2203/4545 5012/0054818 AL* 3/2012 Nohotal. oo 7251143
(2013.01)
OTHER PUBLICATIONS
56 Ref Cited
(56) elerences Ste Ion Stoica et al., “Chord: A Scalable Peer-to-peer Lookup Protocol
U.S. PATENT DOCUMENTS for Internet Applications”, IEEE/ACM Transactions on Networking,
vol. 11, No. 1, pp. 17-32, Feb. 2003.
7,620,816 B1 11/2009 Vigue et al. Non Final Office Action for U.S. Appl. No. 12/757,911 dated Jan. 29,
7,706,340 B2* 4/2010 Bronez 370/338 2013.
7,729,280 B2 6/2010 Takeda et al. Non Final Office Action for U.S. Appl. No. 12/757,911 dated Oct. 25,
7,738,443 B2 6/2010 Kumar 2012.
2003/0177240 Al 9/2003 Gulko et al. Notice of Allowance for U.S. Appl. No. 12/757,911 dated Jun. 5,
2004/0054807 Al 3/2004 Harvey et al. 2013,
2005/0108203 Al 5/2005 Tang et al. PCT International Search Report mailed date May 9, 2011 for Inter-
2005/0204042 Al 9/2005 Banerjee et al. . L
2007/0121570 Al 5/2007 Takeda et al national Application No. PCT/US2011/022151.
2007/0147371 Al 6/2007 Radha et al.' Sony Computer Entertainment Incorporated, “Cell Broadband
2008/0095163 Al 4/2008 Chen et al. Engine Architecture”, Version 1.0, Aug. 8, 2005.
2008/0165786 Al* 7/2008 Ahujaetal. 370/395.2
2009/0014424 Al 1/2009 Meschter * cited by examiner

U.S. Patent Aug. 4, 2015 Sheet 1 of 11 US 9,100,933 B2

SET INDEX i to FIRST
105" FINGER

110
NO YES

A 4 A 4

New End ID = new End ID = End ID
closer(End ID+1, End ID)

| | 2
115S 120

ID(i) closer
than new End
ID?

A 4

Forward copy to Finger node
ID(i) with End ID=new End ID

/

130

i=i+1 P 140

135

FIG. 1

U.S. Patent Aug. 4, 2015 Sheet 2 of 11 US 9,100,933 B2

200

222

202
FIG. 2A
Node 0
y v Y v y
Node 1 Node 2 Node 4 Node 8 Node 16
v v v v
Node 3 Node 6 Node 10 Node 18
— v
Node 11 Node 14 Node 19
v
FIG. 2B Node 23
v
Node 24 Node 27 Node 31

U.S. Patent Aug. 4, 2015 Sheet 3 of 11
300 3‘&
\/\ GENERATE OR RECEIVE

BROADCAST MESSAGE

(Optional)

301

DATA

A

OBTAIN AVAILABLE
UPLINK BANDWIDTH

|_—306

US 9,100,933 B2

304

A

DETERMINE NUMBER OF
COPIES TO SEND BASED
ON AVAILABLE UPLINK
BANDWIDTH

/

FINGER
TABLE
1, 2 4 8,

/

|

DETERMINE RECEIPIENTS
AND END ID’s USING
FINGER TABLE AND

NUMBER OF COPIES TO
SEND

Y

312—_

SEND COPIES AND END
ID’s TO RECEIPIENTS

301

/=]

FIG. 3

U

U.S. Patent

200

Aug. 4, 2015

222

Sheet 4 of 11

US 9,100,933 B2

FIG. 4B

Node 1 |« Node 0 Node 16
Node 2 Node 3 Node 18
Node 4 Node 11 Node 19
Node 6 Node 10 Node 23
v v ¥ ' v
Node 8 Node 14 Node 24 Node 27
v
Node 31

U.S. Patent Aug. 4, 2015 Sheet 5 of 11 US 9,100,933 B2
500
(VW 502
GENERATE OR RECEIVE FT'RS‘EE
BROADCAST MESSAGE e
(Optional) ,2,4,8,
\
501 504
OBTAIN AVAILABLE | g6
Y UPLINK BANDWIDTH 510
DATA / " /
OBTAIN BANDWIDTH
AVAILABLE TO FINGER OPTIMIZE FINGER
508— | NODES AND SELECTED [TABLE -
NEIGHBORS (optional)
v
DETERMINE NUMBER OF
COPIES TO SEND BASED
ON AVAILABLE UPLINK
512—" BANDWIDTH FINGER
TABLE
1,2,3,8.16
DETERMINE RECEIPIENTS | N
514—" | AND END ID’s 504
516~_| SEND COPIES AND END
ID’s TO RECEIPIENTS

END ID =
16

/)
U

/=]

208 ll
~O

FIG. 5

U.S. Patent

200

Aug. 4, 2015

Sheet 6 of 11

US 9,100,933 B2

Node 2

FIG. 6B

v v v v v
Node 4 Node 8 Node 6 Node 10 || Node 14
Node 11 4J
A Y
Node 16 Node 18 Node 19 Node 27
A 4 4
Node 23 Node 31
v
Node 24

U.S. Patent

200

Aug. 4, 2015

222

Sheet 7 of 11

US 9,100,933 B2

700 Detect Missing Find upstream Obtain missing
FIG. 7B L, Broadcast node having packet from
. Packet missing packet upstream node
702 704 706
710 :
L, Buffer Broadcast Identify buffered Send buffered
Packets received packets to finger packet to finger
FIG.7C 712 ™ nodes node
714 716
715»/Request/ / Packet /
720 2‘
______ 23] 7225] 721 717
FIG. 7D U
-2 A
725~V 794

U.S. Patent Aug. 4, 2015 Sheet 8 of 11 US 9,100,933 B2

[e]
[=
[=]

815

/g
I

820

o0

U.S. Patent Aug. 4, 2015 Sheet 9 of 11 US 9,100,933 B2

905
200 \ 901
PROCESSOR
PROCESSOR 915
PROCESSING /
UNIT PROCESSOR
LOCAL
STORAGE
/ PROCESSOR
910
PROCESSING
UNIT
| 920
PROCESSING
UNIT
LOCAL
STORAGE

FIG. 9

U.S. Patent Aug. 4, 2015 Sheet 10 of 11 US 9,100,933 B2

1000

| 1005_ 960 L 1011
1006 2 "N Mo B USER Loz
| } CPU : INTERFACE !
: . 1012 '
. P/S . !
: MEMORY :] '
/| 1003— 1o P '
! PROGRAM ! : :
| ! 10141 :
| 1004—2 MESSAGE CACHEL™ " 1010 :
: 1008 ——— || -ttt ' |
| 1007 BUFFER GRAPHICS :
i 1030 |
: ASAN memory || SPY [|
| FINGER TABLE 940 235 :
i Node Key Data keys :
[| 50 51, 52, 53 DISPLAY}—,_ 1050
[25 26, 27, 28 :
17 18,19, ...25 |
1o 10, 11 AUDIO 1, 1055 |
[4 5,6,7..11 PROCESSOR :
1 i
l 1 :
| 1025 !
. NETWORK |5~ |
! STORAGE INERFACE |
: 1015 X |

MESSAGE 1027
PACKET
1026

FIG. 10

U.S. Patent

Aug. 4, 2015 Sheet 11 of 11

US 9,100,933 B2

1101\

Broadcast Instructions

Bandwidth Determination Instructions
1103

Copy Number Determination Instructions
1105

Instructions for Determining Recipients
and End ID’s
1107

Instructions for Querying key nodes and
neighbor Nodes to determine Bandwidth
(Optional)

1109

Instructions for Swapping Key Values with
other Nodes
(Optional)
111

Instructions for Receiving or Initiating a
Broadcast Message
(Optional)

1113

Instructions for Recovery of Lost
Broadcast Message Packets
(Optional)

1115

FIG. 11

US 9,100,933 B2

1
APPLICATION LEVEL BROADCAST IN PEER
OVERLAY NETWORK

PRIORITY CLAIM

This application is a divisional application claiming the
benefit of priority of commonly assigned U.S. patent appli-
cation Ser. No. 12/757,911, filed Apr. 9, 2010, the entire
disclosure of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to peer-to-peer networks and
more specifically to broadcasting of content over the peer-to-
peer network.

BACKGROUND OF THE INVENTION

Peer to peer (P2P) networks are distributed data networks
without any centralized hierarchy or organization. Peer to
peer data networks provide a robust and flexible means of
communicating information between large numbers of com-
puters or other information devices, referred to in general as
nodes. In a P2P network, each node within the P2P network is
defined as a peer of every other computing system within the
network. Each node within the P2P network may be config-
ured to execute software having substantially equivalent
functionality. Therefore, each node may act as both a provider
and a user of data and services across the P2P network. Peer
to peer data networks provide a robust and flexible means of
communicating information between large numbers of com-
puters or other information devices, referred to in general as
nodes.

A P2P network relies primarily on the computing power
and bandwidth of the nodes in the network rather than con-
centrating it in a relatively low number of servers. P2P net-
works are typically used for connecting nodes via largely ad
hoc connections. Such networks are useful for many pur-
poses. P2P networks may be used, e.g., for sharing content
files containing audio, video, data or anything in digital for-
mat is very common, and real-time data, such as telephony
traffic, may also be transmitted using P2P technology.

An overlay network is a logical or virtual network organi-
zation that is imposed on nodes connected by one or more
types of underlying physical network connections. In an over-
lay network, nodes are connected by virtual or logical links,
each of which can correspond with one or more paths in an
underlying physical network. Overlay network are typically
implemented in hardware and/or software operating in the
application layer or other top-level layer of an OSI network
stack or other type of networking protocol.

One class of peer to peer overlay networks are referred to as
distributed hash table networks. Distributed hash table over-
lay networks use a hash function to generate and assign one or
more key values to a unique node. The set of all possible key
values is referred to as a hash space. Nodes are organized in
the hash space according to their assigned key values. The
hash function is selected so that nodes are approximately
evenly distributed throughout the hash space. Distributed
hash table overlay networks are typically highly scalable,
often supporting millions of nodes; robust, allowing nodes to
join or leave frequently; and efficient, routing a message to a
single destination node quickly.

There are numerous different types of distributed hash
table overlay networks. One type of peer to peer overlay
network is known as a Chord network. The Chord overlay
network protocol is described in detail in “Chord: A Scalable

10

15

20

25

30

35

40

45

50

55

60

65

2

Peer-to-peer Lookup Protocol for Internet Applications™, Ion
Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, Hari Balakrish-
nan, IEEE/ACM Transactions on Networking, Vol. 11, No. 1,
pp. 17-32, February 2003, which is incorporated herein by
reference. Another type of distributed hash table overlay net-
work is Pastry, which is described in “Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems,” A. Rowstron and P. Druschel. /FIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, pages 329-350,
November, 2001, which is incorporated herein by reference.

A Chord overlay network may exhibit logarithmic proper-
ties arising from “asymptotic complexity” of messaging. For
example, if there are N nodes in a Chord ring and a first node
wants to send a message to a second node, the first node
typically has to communication with some subset of the N
nodes in order to locate node B. In a Chord overlay network,
the first node generally has to communicate with a very small
subset of all N nodes, specifically log, N. This property
allows a Chord overlay network to have relatively fast mes-
saging, even for a very large number N of nodes. However, a
Chord overlay network can only guarantee this log, N mes-
saging property if the IDs of the nodes are completely ran-
domly distributed around the Chord ring.

Although distributed hash table overlay network protocols,
such as the chord protocol, provide efficient distribution of a
message to a single destination node, they do not allow for a
single message to be efficiently distributed to multiple desti-
nation nodes, referred to as broadcasting (or multicasting) a
message.

Inonetypical implementation, a node desiring to broadcast
a message to all of the other nodes must send a message to
each node separately. As each node only has direct knowledge
of a limited number of nodes, a node initiating a broadcast
message, referred to as an initiating node, must blindly send
messages to all possible key values. For distributed hash table
networks, this entails sending a separate message to each
possible key value. For a distributed hash table network with
a hash space of 2°160 (arising from the use of a 160-bit hash
function such as SHA-1), this is unfeasible.

In another typical implementation, a flooding approach is
used to distribute a broadcast message. An initiating node
sends a message to all of the nodes directly connected with the
initiating node in the overlay network. Upon receiving the
message, each receiving node in turn forwards the message to
any additional nodes directly connected with each receiving
node in the overlay network. This implementation is ineffi-
cient, as some nodes receive the same message more than
once. Moreover, this implementation consumes a large
amount of network bandwidth and takes a large amount of
time to implement.

To reduce the bandwidth required by flooding broadcast
messages, a modified flooding scheme assigns a time-to-live
(TTL) value to each broadcast message. Each time a copy of
abroadcast message is forwarded to additional node, its TTL
value is decremented. When the TTL value reaches 1, the
broadcast message is no longer forwarded. Although this
modified flooding scheme reduces the amount of wasted net-
work bandwidth and the number of duplicate messages, it
cannot ensure that the broadcast message will be routed to all
nodes.

It is therefore desirable for a system and method to guar-
antee each node in a peer to peer overlay network receives a
broadcast message. It is further desirable that the system and
method guarantees that each node in a peer to peer overlay
network receives only one copy of a broadcast message,

US 9,100,933 B2

3

thereby ensuring that network bandwidth is efficiently uti-
lized. It is further desirable that the system and method
require minimal time and bandwidth resources from a node
initiating a broadcast message. It is also desirable that the
system and method enable broadcast messages to be selec-
tively directed to portions of the overlay network with no
additional network bandwidth overhead. It is desirable for the
system and method to deliver broadcast messages to all or a
selected portion of the peer to peer overlay network within a
minimal time period.

It is within this context that embodiments of the present
invention arise.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention may be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which

FIG. 1 is a flow diagram illustrating a method of broad-
casting a message with an End ID in an overlay network.

FIGS. 2A-2B are schematic diagrams illustrating an
example of broadcasting a message in an overlay network.

FIG. 3 is a flow diagram illustrating a method for applica-
tion-level multi-casting a message with a peer node in an
overlay network according to an embodiment of the present
invention.

FIGS. 4A-4B are schematic diagrams illustrating an
example of broadcasting a message in an overlay network
according to an embodiment of the present invention.

FIG. 5 is a flow diagram illustrating a method for applica-
tion-level multi-casting a message in an overlay according to
an alternative embodiment of the present invention.

FIGS. 6A-6B are schematic diagrams illustrating an
example of application-level multi-casting a message in an
overlay network according to the alternative embodiment of
the present invention.

FIG. 7A is a schematic diagram illustrating an example of
recovery of lost data packets in broadcasting a message in an
overlay network according to an alternative embodiment of
the present invention.

FIG. 7B is a flow diagram illustrating an example of recov-
ery of lost broadcast data from the perspective of the node
requesting a missing data packet according to an alternative
embodiment of the present invention.

FIG. 7C s a flow diagram illustrating an example of recov-
ery of lost broadcast data from the perspective of a node
providing a missing data packet according to an alternative
embodiment of the present invention.

FIG. 7D is a block diagram illustrating buffering of broad-
cast data packets in conjunction with alternative embodi-
ments of the present invention.

FIG. 8 illustrates a set of information processing devices
suitable for implementing an overlay network according to an
embodiment of the invention;

FIG. 9 illustrates a set of information processing devices
suitable for implementing an overlay network according to an
embodiment of the invention;

FIG. 10 illustrates the components of an information pro-
cessing device suitable for implementing a node of an overlay
network according to an embodiment of the invention; and

FIG. 11 illustrates an example of a computer-readable stor-
age medium encoded with computer readable instructions for
implementing application-level multicast in a peer overlay
network in accordance with an embodiment of the present
invention.

10

15

25

30

40

45

50

55

4

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Although the following detailed description contains many
specific details for the purposes of illustration, anyone of
ordinary skill in the art will appreciate that many variations
and alterations to the following details are within the scope of
the invention. Accordingly, the exemplary embodiments of
the invention described below are set forth without any loss of
generality to, and without imposing limitations upon, the
claimed invention.

Embodiments of the present invention address the problem
of application-level multicasting in a peer-to-peer network.

INTRODUCTION

Each node in a peer-to-peer overlay network is assigned a
unique key. In addition each shared file on the network is also
assigned a unique key. When a new peer or file is added to the
circle or new information about a peer is generated that infor-
mation is published to a hash table as a hash number gener-
ated according to some hash function. Thus, the hash table
may be regarded as a database in which each database entry
has a hash number. The hash numbers are chosen from an
identifier (ID) space that covers a sufficiently large range of
numbers that two entries are extremely unlikely to be hashed
to the same identifier number. For example, the well-known
SHA-1 hash function has 160 bits, which may represent (2%)
20 different numbers. Peers randomly choose an identifier
from the ID space and organize themselves into the circle.
Each published object in the hash table is a pointer back to a
particular peer that has that object. The hash table is said to be
distributed in the sense that each of the peer nodes in the
network is responsible for keeping track of a different range
of'keys that make up the hash table.

When a peer joins the hash table, it is assigned responsi-
bility for a particular range of keys in the ID space of the hash
table. Each peer maintains a finger table stored in a memory
that provides a fast lookup into the ring. The topology of the
nodes inthe overlay network may be dynamic. Nodes can join
orleave the overlay network at any time. When a node departs
the overlay network, the links between the departing node and
any related nodes should be updated. In general, the update
should change links to the departing node in other nodes’
finger tables or other node references to valid nodes. Addi-
tionally, new links should be established to nodes previously
linked to by the departing node’s finger table or other node
references. Joining nodes should be added to other nodes’
finger tables. Additionally, finger tables or other links should
be established for the joining nodes. Example protocols for
handling nodes joining or leaving the overlay network are
discussed in detail in the above-cited references.

Generally, each peer node in the network needs to be able
to communicate directly with every node in its finger table.
This may be implemented by a persistent connection, but it is
not required. Persistent connections are an optimization that
most Chord implementations choose to use, but are not fun-
damentally necessary for operation of a Chord network.
Nodes in the network may have direct communication avail-
able with any other nodes. Typically, connectivity to non-
finger table nodes may be implemented with some sort of
fixed size cache. For example, a node might keep connections
open to K non-finger table nodes. Again, this is merely an
optimization that can be used to avoid performing a Chord
lookup using the finger table.

There has been an emerging trend to implement online
video games using P2P networks. Another emerging trend

US 9,100,933 B2

5

has been the development and popularity of a “spectator”
mode in such online video games. In the spectator mode,
which is preferably implemented at the application level, one
peer acts as an agent that handles a “virtual camera” that
observes activity within the game. The agent broadcasts the
activity captured by the virtual camera to other nodes in the
P2P network. Implementation of a large scale online match
spectator mode in a P2P network involves sending high band-
width data (e.g., audio/video streaming) to all nodes in the
same overlay.

Commonly assigned U.S. Pat. No. 7,468,952 (which is
incorporated by reference herein in its entirety) describes a
way of handling broadcast messaging in peer to peer overlay
network. In U.S. Pat. No. 7,468,952, broadcast messages
include an End ID parameter specifying the range of key
values for nodes that should receive a broadcast message.
Each node of an overlay network maintains a list of finger
nodes and their respective key values. Upon receiving a
broadcast message, anode assigns a finger node a new End ID
value based upon the End ID value of the broadcast message
or the key value of an adjacent finger node. The node com-
pares a finger node’s new End ID value with the finger node’s
key value to determine whether to forward the broadcast
message to that finger node. A broadcast message forwarded
to a finger node includes an End ID parameter equal to the
new End ID value determined for the finger node. Nodes can
aggregate response messages from their finger nodes.

U.S. Pat. No. 7,468,952, which is incorporated herein by
reference, describes a technique for broadcasting messages
from a node to all other nodes in an overlay network. Each
node broadcasting the message adds an “end ID” to each copy
of'the message that it sends. The end 1D is determined simply
by the ID of next neighbor of the recipient node if it is not the
lastnode in the sending node’s finger table, or by the ID of the
recipient node if it is the last node in the sending node’s finger
table.

By way of example, the End IDs for each copy of the
message can be determined according to a method 100 of
routing a broadcast message in an overlay network according
to an embodiment of the invention. Method 100 efficiently
directs broadcast messages to all of the nodes in the overlay
network without wasting network bandwidth on duplicate
messages or omitting any nodes.

Method 100 can be initiated upon a node receiving or
initiating a broadcast message. Fach broadcast message
includes an End ID parameter. The End ID parameter repre-
sents the range of key values of nodes that the broadcast
message may be forwarded to. For example, if a nodereceives
abroadcast message with an End ID value of 17, then the node
may forward a copy of the broadcast message to any node in
its finger table with a key value less than 17. Furthermore,
each forwarded copy of the broadcast message is assigned an
End ID value according to method 100 to prevent duplicate
messages from being sent to nodes.

A received broadcast message is processed by a node as
follows. As indicated at 105, the node sets an index value i to
the first entry of the node’s finger table. In a first decision
block 110, the node determines whether the finger table entry
specified by the index value i, referred to as the selected finger
table entry, is the last entry of the node’s finger table. If so,
then method 100 proceeds from the first decision block 110 to
assign the parameter new End ID to be equal to the End ID of
the received broadcast message as indicated at 120.

Conversely, if the node determines that the selected finger
table entry is not the last entry of the node’s finger table,
method 100 proceeds from the first decision block 110 to
block 115.

10

15

20

25

30

35

40

45

50

55

60

65

6

At block 115 the parameter new End ID is assigned to be
equal to the key value of the next finger table entry (i.e. the
finger table entry specified by index i+1) or the End ID of the
received broadcast message, whichever is closer to the cur-
rent node in the hash space. The distance between the current
node and a key value, such as the next finger table entry or the
current End ID, can determined in an embodiment by sub-
tracting the current node’s key value from the other key value.

In this example, at block 115 it is assumed that the entries
of the finger table are arranged in order of the key values of
their respective nodes and that broadcast messages are to be
communicated to nodes in order of increasing key values.
However, in alternate embodiments, the finger table can be
arranged in a different order. In these embodiments, the
parameter new End ID may be assigned to be equal to the
finger table entry key value greater than and closest to the key
value of the selected finger table entry at bock 115. This
embodiment communicates broadcast messages to nodes in
order of increasing key values. In a further embodiment, if
broadcast messages are to be communicated to nodes in order
of'decreasing key values, then atblock 115 the parameter new
End ID is assigned to be equal to the finger table entry key
value less than and closest to the key value of the selected
finger table entry.

Following block 115 or block 120, method 100 proceeds to
a second decision block 125. In the second decision block
125, the node determines if the key value of the selected finger
table entry is less than the value of the new End ID parameter.
It so, method 100 proceeds to block 130. Otherwise, method
100 proceeds directly to a third decision block 135.

At block 130 the node forwards a copy of the broadcast
message to the node associated with the selected finger table
entry. The forwarded copy of the broadcast message includes
an End ID value set to the value of the new End ID parameter.

Following the second decision block 125 or block 130, the
method 100 proceeds to the third decision block 135. At
decision block 135 the node determines if the selected finger
table entry is the last entry of the node’s finger table. If so,
then method 100 may end and the node is finished forwarding
the broadcast message.

If at decision block 135 the node determines that the
selected finger table entry is not the last entry of the node’s
finger table, method 100 proceeds to block 140. At block 140
the node increments the index i, thereby selecting the next
finger table entry of the node’s finger table. Following block
140, method 100 proceeds back to the first decision block
110. The operations at 110, 115,120, 125, 130, 135, and 140
may be repeated as many times as necessary to evaluate all of
the entries of the node’s finger table.

FIGS. 2A-2B schematically illustrate an example of imple-
mentation of the method described above in a P2P network. In
a typical P2P implementation, a large number of peers con-
nected to the Internet are organized into a ring to form a
peer-to-peer network 200 as shown in FIG. 2A. In this
example, the network 100 includes peer nodes 202, 204, 206,
208,210,212,214,216,218,220,222,224,226, and 228. Not
all nodes connected to the network 200 are shown for the sake
of simplicity. Each peer node is assigned a unique identifier
referred to as a key. These identifiers may be evenly and
randomly distributed. However, this is not a strict require-
ment for all embodiments of the present invention.

For the purposes of example, the assignment ofkeys to peer
nodes in network 200 and the keys in each node’s finger table
may be as shown in Table I below:

US 9,100,933 B2

7
TABLE I

NODE KEY Finger values
202 0 1,2,4,8,16
204 1 2,3,5,9,17
206 2 3,4,6,10,18
208 3 4,5,7,11,19
210 4 5,6,8,10,20
212 6 7,8,10,12,22
214 8 9,10,12,14,24
216 10 11,12, 14,18, 26
218 11 12,13,15,19,27
220 14 15,16, 18, 22, 30
222 16 17,18,20, 28,1
224 18 19, 20,22,26,3
226 19 20,21,23,27,4
228 23 24,25,27,31,8
230 24 25,26,28,1,9
232 27 28,29,31,3,11
234 31 0,1,3,5,7,15

It is noted that not every key in a given node’s finger table
necessarily corresponds to a node.
Improved Overlay Broadcast

To ensure that the broadcast message is sent to all nodes in
the overlay, any node that must send copies of the broadcast
message should at least send a copy to the next node in the
overlay according to the node order. The other nodes may be
distributed in any way amongst the remaining nodes in the
sending node’s finger table. By way of example, if it is pos-
sible to send more than one node it is desirable for the recipi-
ent nodes to include a last node in the sending node’s finger
table according to the node order.

The broadcasting of the message on the network 200 in
accordance with the method 100 is illustrated in FIGS. 2A-2B
and summarized in Table II below. Suppose, for the sake of
example, node 202 with key value O initiates or receives a
message for broadcast to the rest of the nodes in the network
200. According to the technique discussed above, the node
202 can send copies of the message to nodes 204, 206, 210,
214, and 222 (corresponding to key values 1, 2, 4, 8, and 16
respectively) along with end ID’s 2, 4, 8, 16, and O respec-
tively.

Node 204 doesn’t send a copy of the message since the next
node in its finger table has a key value 2, which corresponds
to the end ID received by node 204. Node 206 sends a copy to
node 208 (key value 3) with end ID=4. Node 206 does not
send a copy to any other node since the next key value (4) is
equal to the end ID received by node 206. Node 210 sends a
copy only to node 212 (key value 6) with end ID=8 because
there is no node with key value 5 and the last key value in the
finger table for node 210 is 8, which is the end ID received by
node 210. Node 212 doesn’t send a copy because there are no
nodes at any key values in its finger table at values between its
own key value of 6 and the end ID=8 received from node 210.

Node 214 (key value 8) sends a copy to node 216 (key value
10) with end ID 11. Node 214 also sends a copy to node 220,
(key value 14) with end ID=16, which is equal to the end ID
received by node 214 from node 202. Node 216 (key
value=10) sends a copy to node 218 (key value 11) with end
1D 14. Node 218 doesn’t send a copy since there are no nodes
at the values in its finger table between its key value of 11 and
the end ID of 14 that it received from node 216. Node 220 (key
value 14) doesn’t send a copy since there are no nodes at the
values in its finger table between itself and the end ID of 16
that it received from node 214.

Node 222 (key value 16) only sends a copy with end ID=0
to node 224 (key value=18) since there are no other nodes at
the values in its finger table between itself and the end ID of

10

15

20

25

30

40

45

55

8
0 that node 222 received from node 202. Node 224 similarly
sends a copy only to node 226 (key value=19) also with end
ID=0.Node 226 sends a copy only to node 228 (key value 23),
which sends copies to nodes 230 (key value 24), 232 (key
value 27), and 234 (key value 31) with end ID’s 27,31 and O
respectively.

TABLE II
Node (key # of Hops to
value) Finger values Sends to (end ID) receive message
202 (0) 1,2,4,8,16 1(2), 2(4), 4(8), 0
8(16), 16(0)

204 (1) 2,3,5,9,17 Doesn’t send

206 (2) 3,4,6,10,18 3(4) 1
208 (3) 4,5,7,11,19 Doesn’t send 2
210 (4) 5,6,8,10,20 6(8) 1
212 (6) 7,8,10,12,22 Doesn’t send 2
214 (3) 9,10,12,14,24 10(11), 14(16) 1
216 (10) 11,12,14,18,26 11(11) 2
218 (11) 12,13,15,19,27 Doesn’t send 3
220(14) 15,16,18,22,30 Doesn’t send 3
222(16) 17,18,20,28,1 18(0) 1
224 (18) 19,20,22,26,3 19(0) 2
226 (19) 20,21,23,27,4 23(0) 3
228 (23) 24,25,27,31,8 24(27),27(31), 4

31(0)

230(24) 25,26,28,1,9 Doesn’t send 5
232(27) 28,29,31,3,11 Doesn’t send 5
234(31) 0,1,3,5,7,15 Doesn’t send 5

FIG. 2B illustrates the propagation of the message from
node to node according to each node’s key value. As may be
seen from Table II above and FIG. 2B, the message is broad-
cast from the initiating node to the final node in five “hops”.

In the technique described above, every node attempts to
send N copies of a message where N is the number of finger
nodes in the sending node’s finger table. This technique
allows messages to be broadcast while avoiding the problem
of' nodes receiving multiple copies of the same message. For
example, node 202 must send copies to five other nodes.

However, if the data transmission requires large bandwidth
(such as for broadcasting a video stream), a node may not
have sufficient bandwidth to generate and send N copies of a
message. For example, if a node is receiving broadcasting
data at a rate of 128 kbps and the number of its finger nodes is
16, the node must forward the data to 16 finger nodes accord-
ing to the prior art, which, in this example, requires 2 Mbps of
uplink bandwidth. This requirement may be larger than the
uplink bandwidth available for a majority of residential Inter-
net services. To scale up the broadcast capability of a peer
overlay network one would have to either increase the avail-
able bandwidth or processing power or approach the problem
in a different way.

Also, as the data propagates over multiple nodes, some data
may be lost either due to packet loss over the IP network, or
due to churn in the overlay. For example, in a Chord overlay,
it is required for each node to have successful connections to
its successor and its predecessor nodes. Embodiments of the
invention solve these issues by exploiting the Chord’s flex-
ibility in neighbor (finger nodes) selections, and presence of
inbound connections at each node for possible data loss
recovery.

Embodiments of the present invention provide a way to
broadcast high-bandwidth data to all nodes in the same Chord
overlay where available bandwidth and processing power are
limited. Such embodiments may be applied to large scale
audio/video streaming applications (e.g., a large scale online
match spectator system) that require all peer nodes to relay

US 9,100,933 B2

9

data to downstream peer nodes in a way that scales the system
to the number of nodes, while reducing bandwidth cost at a
server.

To overcome this uplink bandwidth limitation, the method
described above may be modified so that each node sends
copies of a broadcast message only to a subset of the nodes in
its finger table, where the number of nodes in the subset
depends on the uplink bandwidth available to the node send-
ing the copies. Specifically, in embodiments of the present
invention, each node that either initiates or receives a broad-
cast message determines its available uplink bandwidth that is
available to the node. The node then sends the message to the
first node in its finger table and as many other nodes as the
available uplink bandwidth permits. Each copy of the mes-
sage is sent with an End ID, which may be determined as
described above.

The flow diagram depicted in FIG. 3 illustrates an example
of'a method 300 according to an embodiment of the present
invention. The method 300 may be implemented by one or
more peers in a peer-to-peer network at an application level of
a program. For example, the method 300 could be imple-
mented at application level as part of an online video game
program that allows users of different peer devices to partici-
pate in a game online over a network. Such an online video
game may include spectator mode as described above.

In the method 300, a node may either receive or initiate a
broadcast message 301 as indicated at 302. By way of
example, and not by way of limitation, receiving or initiating
a broadcast message may include implementing the part of
spectator mode. Specifically, anode acting as an agent may be
configured to control a virtual camera within an online game
and broadcast the activity captured by the virtual camera to
other nodes as digital video packets so that the other nodes
can participate in the game as spectators. The node acting as
agent could also broadcast audio commentary in the form of
digital audio packets. Commentary in the form of text or
graphics could also be broadcast in the form of suitably con-
figured packets. The commentary could be synchronized to
the activity captured by the virtual camera, e.g., by appropri-
ate time stamps associated with the packets that are broadcast.

A node that implements the method 300 has access to a
finger table 304 stored in a memory. The finger table 304
contains key values that include key values for nodes and files
for which it is responsible. As indicated at block 306 the node
obtains the uplink bandwidth BW 303 available to it.

By way of example, and not by way of limitation, the node
may obtain the uplink 303 by retrieving a stored value from
memory. The stored value may be determined in a separate
process that is independent of the method 300. The bandwidth
determination may be performed with the node or by a dif-
ferent node. There may be any number of different ways to
estimate available bandwidth 306. By way of example, and
not by way of limitation, available bandwidth may be esti-
mated as described in commonly assigned U.S. patent appli-
cation Ser. No. 12/267,254, published as U.S. Patent Appli-
cation Publication Number US 2009-0144424 A1, the entire
contents of which are incorporated herein by reference.

As an alternative example, a special server can be used
where, before joining overlay, every node sends a relatively
large packet to the server. The server can observe how long it
has taken to receive the whole packet and then report the
result (speed=size/time-taken) back to the node. The result
can be used by the node as an initial bandwidth estimation. Of
course, available bandwidth may change over time. Each
node can receive a feedback from its destination nodes about
indications of bandwidth congestion, such as packet loss or a
growth of delay. Based on this feedback, the node can gradu-

25

30

35

40

45

50

55

60

65

10

ally reduce its estimated bandwidth until the congestion is
mitigated. Every time a node sends a broadcast message, it
can use the current knowledge of the estimated bandwidth
303.

Once the available uplink bandwidth is determined, the
node may determine a number N of copies to send based on
the available uplink bandwidth BW, as indicated at block 308.
By way of example, and not by way of limitation, the number
of recipient nodes may be determined from simple consider-
ations of the available bandwidth BW in bytes per second, a
size S ofthe broadcast message in bytes, and an available time
T in seconds for sending the N copies of the message must be
sent. The number N of copies may be determined as the
integer value closest to (BW-T)/S. The node may be config-
ured so that the number N of copies is always 1 or greater.
Once the number of copies has been determined, the node can
determine which nodes in the finger table should receive a
copy of the message.

Once the number N of copies to send has been determined,
the node may determine the key values for the recipients of
the copies and End ID’s to send with each copy as indicated
at block 310 and send the copies and End ID’s to the recipient
nodes, as indicated at block 312. The node may determine the
key values for the recipients of the copies and End ID’s using
the finger table 304 and the number N of copies to send. By
way of example, the node may be configured to always send
a copy to the node in its finger table having the next highest
key value. E.g., node 202 with key value 0 would always send
a copy to node 204 with key value 1.

It is noted that, except for selection of the next node in the
overlay, the selection of the recipient nodes is somewhat
arbitrary. For example, node 202 may determine there is only
enough uplink bandwidth to send two copies of the message.
Node 202 may automatically send one copy to node 204 with
End ID 16 and send the other copy to node 222 with key value
0, respectively. In this case node, 202 sent the second copy to
the highest key value node in its finger table. The End 1D’s
sent with each message may be determined as described
above with respect to FIG. 1.

By way of example, and not by way of limitation, broad-
casting of a message according to the method 300 of FIG. 3
over the rest of the network 200 may take place as illustrated
in FIGS. 4A-4B and summarized in Table III below.

Specifically, Node 204 can determine that it can only send
two copies and sends them to nodes 206 and 208 with end [Ds
3 and 16 respectively. Node 206 doesn’t send any copies of
the message since there are no nodes between itself and the
End ID of 3 that it received from node 204. Node 208 sends
copies to nodes 210 and 218 with End ID’s of 11 and 16
respectively. Node 210 can only send two copies and sends
copies to nodes 212 and 214 with End ID’s of 8 and 11
respectively. Node 212 doesn’t send any copies of the mes-
sage since there are no nodes in its finger table between its key
value of 6 and the End ID of 8 that it received from node 210.
Node 214 only sends a copy to node 216 since there are no
other nodes in its finger table between its key value of 8 and
the End ID of 11 that it received from node 210. Node 216
doesn’t send any copies of the message since there are no
nodes in its finger table between itself and the End ID of 11
that it received from node 214.

Node 218 only sends a copy to node 220 since there are no
other nodes in its finger table between itself and the End ID of
16 that it received from node 208. Node 220 doesn’t send any
copies since there are no nodes in its finger table between
itself and the End ID of 16 that it received from node 218.
Node 222 forwards the copy it received from node 202 only to
node 224 since there are no other nodes in node 222’s finger

US 9,100,933 B2

11

table between node 222’s key value of 16 and the End ID of 0
that it received from node 202. Node 224 only forwards a
copy to node 226 for two reasons. One reason is that node 224
only has enough bandwidth available to send a single copy.
The other reason is that there are no nodes at any key values
between node 224°s key value of 18 and the End ID of 0 that
node 224 received from node 222.

Table I1I below summarizes the broadcasting of the mes-
sage from node 202 to the other nodes.

TABLE III
Copies
permitted
within
target time
Node by available # of Hops
(key Uplink Sends copiesto to receive
value) Finger values BW limit nodes (End ID) message
202(0) 1,2,4,8,16 2 1(16), 16 (0) 0
204() 2,3,5,9,17 2 2(3),3(16) 1
206 (2) 3,4,6,10,18 1 Doesn’t send 2
208 (3) 4,5,7,11,19 5 4(11), 11(16) 2
210 (4) 5,6,8,10,20 2 6(8), 8(11) 3
212(6) 7,8,10,12,22 3 Doesn’t send 4
214(8) 9,10,12,14,24 1 10(11) 5
216 (10) 11,12,14,18,26 2 Doesn’t send 4
218 (11) 12,14,15,19,27 2 14(16) 3
220 (14) 15,16,18,22,30 4 Doesn’t send 3
222(16) 17,18,20,28,1 2 18(0) 1
224 (18) 19,20,22,26,3 1 19(0) 2
226 (19) 20,21,23,27,4 2 23(27), 27(0) 3
228(23) 24,25,27,31,8 2 24(27) 4
230 (24) 25,26,28,1,9 2 Doesn’t send 5
232(27) 28,29,31,3,11 2 31(0) 6
234(31) 0,1,3,5,7,15 2 Doesn’t send 7

It is noted that in the example described above, nodes 208,
212 and 220, which have relatively high uplink bandwidth,
are underutilized. Node 208 can send up to five copies, but
only sends two copies. Node 212 can send three copies and
node 220 can send four copies, but neither of these nodes
forwards any copies. This is largely due to the somewhat
uneven distribution of high bandwidth nodes in the overlay.
One consequence of this is that it takes seven hops for the
message to travel from node 202 to node 234. In embodiments
of the present invention, nodes can optimize a method for
broadcasting messages by selectively updating the nodes in
their finger tables to ensure that high bandwidth nodes can
forward as many copies of a message as possible.

By way of example, the flow diagram of FIG. 5 illustrates
an example of a method 500 for application-level multi-cast
in an overlay network according to an alternative embodiment
of the present invention. The method 500 may be imple-
mented by one or more peers in a peer-to-peer network at an
application level of a program, e.g., as part of an online video
game program that allows users of different peer devices to
participate in a game online over a network.

In the method 500 a node may either receive or initiate a
broadcast message 501 as indicated at 502. By way of
example, and not by way of limitation, receiving or initiating
a broadcast message may include implementing the part of
spectator mode, e.g., as discussed above with respect to FIG.
3. A node implementing the method 500 has a finger table 504
with key values that include key values for nodes for which it
is responsible. As indicated at block 506 the node determines
the uplink bandwidth BW available to it. This may be accom-
plished, e.g., as discussed above with respect to block 306 of
FIG. 3.

10

15

20

25

30

40

45

55

12

Once the available uplink bandwidth is obtained, the node
may determine a number N of copies that it can send based on
the node’s available uplink bandwidth BW, as indicated at
block 510.

In addition to obtaining its own available uplink band-
width, the node may also obtain the uplink bandwidth avail-
able to other nodes as indicated at 508. This bandwidth data
may include the uplink bandwidth available finger nodes in its
finger table and selected finger nodes of those finger nodes.
Each node may use this information to optimize its finger
table to ensure that it contains at least one high bandwidth
node that can be used for forwarding broadcast messages.

By way of example, a node may send a query to each node
in its finger table regarding the bandwidth available to those
nodes. Each of those nodes may obtain their available band-
widths, e.g., as discussed above with respect to block 306 of
FIG. 3, and send a reply with the bandwidth information. To
limit the number of queries and responses that need to be sent,
each node that receives a query can in turn query of few of its
finger nodes having key values that are relatively close, e.g.,
a few key values ahead of or behind the querying node in key
order. By way of example, each node may query from 1 or 2
up to 8 or 10 nodes ahead of it in key order that are in its finger
table and from 1 or 2up to 8 or 10 nodes behind it in key order
to which it has inbound connections. To improve scalability
as the number of nodes in the overlay increases, it is desirable
to either fix the number of nodes that are queried or to place a
fixed upper limit on the number of nodes that are queried.
Each node can transmit its bandwidth to the nodes in its finger
table on a regular basis and to all of the nodes to which it has
inbound connections on a regular basis. The optimum number
of neighbors for which each key node obtains bandwidth
information may depend on memory and bandwidth available
to a node. The process of obtaining this bandwidth informa-
tion can be done periodically, e.g., once every 10 seconds
rather than sending a query when a broadcast message is sent.
Furthermore, the process of obtaining bandwidth information
can be performed in the background asynchronously to the
transmission time of broadcast messages.

Once the node has obtained information on the available
uplink bandwidths for the nodes in its finger table and their
neighbor nodes, the node may be configured to utilize infor-
mation about the uplink bandwidth data available to other
nodes in selection of the key values and EndID’s at 514. In
general, a node may try to ensure that the highest EndID
possible is sent in as few hops as possible to node with the
highest known bandwidth. For example, node 202 may deter-
mine from the bandwidth information obtained at 508 that
node 206 can only send one copy but that node 208 has
sufficient bandwidth to forward five copies of the message. If
node 202 determines that it can only send two copies, it can
use the bandwidth information obtained at 508 to determine
the recipient nodes and EndIDs as follows. Node 202 must
send one copy to node 204 by default. Node 202 can deter-
mine that high bandwidth node 208 is the first node in the
finger table for node 206. This means that node 206 must send
acopy to node 208 with the same EndID that is received from
node 202. Based on this information, node 202 can send one
copy to node 204 with EndID 3 and one copy to node 206 with
EndID 0. Since node 206 can only send a single copy, it sends
acopy to the next node downstream, which is high bandwidth
node 208, with EndID 0. Node 208 can send copies to each of
the nodes in its finger table.

In some embodiments, a node can use the bandwidth infor-
mation obtained at 508 to determine whether to optimize its
finger table, e.g., by attempting to make a connection to a
different node and drop a connection to an existing node in its

US 9,100,933 B2

13

finger table as indicated at 512. The process of finger table
optimization can be done periodically, but perhaps less fre-
quently than obtaining bandwidth information. By way of
example, and not by way of limitation, each node may opti-
mize its finger table (or determine whether it needs to update
its finger table) once every minute or so. Alternatively, the
node may perform the optimization only when a change in
uplink speed for one of its finger nodes is detected. Thus, the
overlay can organically adapt to changing network conditions
and optimize broadcasting of messages.

A few general patterns for successtul optimization of finger
tables in conjunction with End ID’s can be summarized as
follows. First, it is generally desirable for a node to maintain
the next node in key order in its finger table. This ensures that
a broadcast message can always be forwarded. Second, as a
result of optimization, a high BW node may have many
inbound connections. When one node is broadcasting there is
only one inbound connection from which any given node
receives broadcast data. The broadcast source may change but
there is generally only one broadcast source at a time. If there
is only one source for inbound broadcast data, it is unlikely for
there to be a situation where all inbound connections will be
sending large amounts of data. Third, if a node has high
bandwidth it might limit the number of nodes that can make
inbound connections to it in order avoid exhaustion of
resources for inbound connections. Fourth, when a node opti-
mizes its finger table it is important to establish connection to
new node before breaking the existing connection to an old
one in its finger table.

By way of example, and not by way of limitation, node 202
could find out from nodes 204, 206, 210, 214 and 222 which
neighbor nodes are in their finger tables and which neighbor
nodes they have inbound connections from, the bandwidths
of these neighbor nodes are and what are the bandwidths of
their -2, -1, +1, and +2 neighbors. Node 202 can use this
information to optimize its finger table. The other nodes in the
overlay can attempt to similarly optimize their finger tables.
An example of an optimization resulting from such a process
is discussed as follows and summarized in Table IV below.
For convenience, in Table IV, the bandwidths have been
expressed as copy values, which represent the number of
copies a node can send.

Node 202 can use the bandwidth information obtained
from node 206 to determine that node 208 (key value 3) has
sufficient bandwidth for 5 copies. Based on this information,
node 202 can update its finger table by establishing a connec-
tion to node 208 and dropping its connection to node 210 (key
value 4). Node 208 learns from node 218 that node 220 (key
value 14). Node 208 updates its finger table by establishing a
connection to node 220 and dropping the connection to node
226 (key value 19). Node 220 may update its finger table by
making connections to node 226 (key value 19) and node 232
(key value 27) and dropping key values 22 and 30, for which
there are no nodes. In this example, the key values for the
remaining nodes are unchanged as indicated by blank spaces
for New Finger Values. The new finger values for each node
are summarized in Table IV below.

TABLE IV
Node -2,-1,+1, New
(key +2 neighbor Finger
value) Old Finger values Copies (copy values) values
202(0) 1,2,4,8,16 2 27(2),31(2),1(2),2(1) 1,2,3,
8,16
204() 2,3,5,9,17 2 31(2),0(2),2(1),3(5)

10

25

30

60

65

14
TABLE IV-continued
Node -2,-1,+1, New
(key +2 neighbor Finger
value) Old Finger values Copies (copy values) values
206 (2) 3,4,6,10,18 1 0(2), 1(2), 3(5), 4(2)
208 (3) 4,5,7,11,19 5 1(2),2(1),402), 6(3), 4,68,
10,14

210 (4) 5,6,8,10,20 2 21, 3(5), 6(3), 8(1)
212(6) 7,8,10,12,22 3 3(5),4(2), 8(1), 10(2)
214 (8) 9,10,12, 14,24 1 4(2),6(3),10(2), 11(2)
216 (10) 11,12, 14, 18,26 2 6(3), 8(1), 11(2), 14(4)
218 (11) 12,14, 15, 19,27 2 8(1), 10(2), 14(4),

16(2)
220 (14) 15,16, 18,22, 30 4 10(2),11(2), 16(2),

18(1)
222(16) 17,18,20,28,1 2 11(2), 14(4), 18(1),

1902)
224 (18) 19,20, 22,26,3 1 14(4),16(2), 19(2),

23(2)
226 (19) 20,21,23,27,4 2 16(2),18(1), 23(2),

24(2)
208 (23) 24,25,27,31,8 2 18(1), 19(2), 24(2),

27(2)
230 (24) 25,26,28,1,9 2 19(2), 23(2), 27(2),

31(2)
232 (27) 28,29,31,3,11 2 23(2),24(2), 31(2),

0(2)
234 (31) 0,1,3,5,7,15 2 24(2),27(2), 002), 1(2)

As discussed above with respect to FIG. 3, the node may
determine the key values for the recipients of the copies and
End ID’s to send with each copy as indicated at block 514 and
send the copies and End ID’s to the recipient nodes, as indi-
cated atblock 516. The node may determine the key values for
the recipients of the copies and End ID’s using the finger table
504 and the number N of copies to send. By way of example,
the node may be configured to always send a copy to the node
in its finger table having the next highest key value. By way of
example, node 202 with key value 0 would always send a
copy to node 204 with key value 1. The End ID s sent with
each message may be determined as described above with
respect to FIG. 1.

Based on the new finger values for each node as described
above, broadcasting of a message according to the method
500 of FIG. 5 over the rest of the network 200 may take place
as illustrated in FIGS. 6A-6B and summarized in Table V
below.

TABLEV
Copies
permitted
within
target
time by Sends #of
Node available copies to Hops to
(key Uplink nodes receive
value) Node Finger values BW limit (End ID) message
202 (0) 0 1,2,3,8,16 2 1(2),3(0) 0
204 (1) 1 2,3,5,9,17 2 2(3), 1
206 (2) 2 3,4,6,10,18 1 Doesn’t send 2
208 (3) 3 4,6,8,10,14 5 4(6), 6(8) 1
8(10),
10(14),
14(0)
210 (4) 4 5,6,8,10,20 2 Doesn’t send 2
212 (6) 6 7,8,10,12,22 3 Doesn’t send 2
214 (8) 8 9,10,12,14,24 1 Doesn’t send 2
216 (10) 10 11,12,14,18,26 2 11(14) 2
218 (11) 11 12,14,15,19,27 2 Doesn’t send 2

US 9,100,933 B2

15
TABLE V-continued
Copies
permitted
within
target
time by Sends #of
Node available copies to Hops to
(key Uplink nodes receive
value) Node Finger values BW limit (End ID) message
220 (14) 14 15,16, 18,19,27 4 16(18), 2
18(19),
19(27),
27(0)
222 (16) 16 17,18,20,28,1 2 Doesn’t send 3
224 (18) 18 19,20,22,26,3 1 Doesn’t send 3
226 (19) 19 20,21,23,27,4 2 23(27) 3
228(23) 23 24,25,27,31,8 2 24(27) 4
230 (24) 24 25,26,28,1,9 2 Doesn’t send 5
232(27) 27 28,29,31,3,11 2 31(0) 3
234 (31) 31 0,1,3,5,7,15 2 Doesn’t send 4

As may be seen from Table V above, by optimizing the
finger tables of a relatively few nodes the message can be
quickly reach high bandwidth nodes and the number of hops
necessary for the message to reach the last node in the over
layer can be reduced significantly. Note that most nodes,
including node 234, receive the message after only 4 hops or
less.

Recovering Lost Packets in an Overlay Broadcast

During the broadcasting, packet loss may occur and a real
time media streaming typically uses an unreliable transport
protocol such as UDP in order to prevent excessive delay due
to retransmissions performed by more reliable transport pro-
tocol suchas TCP. It is noted that overlay networks such as the
Chord overlay were not originally designed for broadcast or
for semantic search. In an overlay broadcast of the types
described above, if a packet is lost in transmission to a given
node, the nodes downstream from the given node will not
receive the lost packet. Consequently, the media quality can
degrade severely as the number of message hops increases. In
an alternative embodiment of the present invention, this prob-
lem may be overcome if the nodes buffer broadcast data for
benefit of downstream nodes.

A given node in a Chord overlay typically has one or more
outbound connections (its finger nodes) as well as one or
more in outbound connections (other nodes for which the
given node is a finger node) as illustrated in the example
depicted in FIGS. 7A-7D. In this example, a node 202 is
receiving a broadcasting data from an upstream node 230 and
is responsible for forwarding the data to multiple destination
its own finger nodes, which are nodes 204, 206,210,214, 222.
Node 230 is receiving data from a broadcast source node 226.
When there is only one broadcast source in the Chord overlay,
it is guaranteed by nature of Chord overlay and the nature of
overlay broadcasting as described herein that there is only one
inbound connection via which broadcasting data is received.
For example, nodes 226 and 234 are connected to node 202,
but the broadcasting data will not be transmitted to node 202
by these nodes according the above-described overlay broad-
cast methods.

Node 202 may detect a missing piece in the data received
from node 230 due to a packet loss between node 230 and
node 202. Such packet loss can be detected, e.g., by inserting
a sequence number in each message. If each packet has a
different sequence number and the sequence numbers follow
a known sequence, node 202 can detect packet loss by iden-
tifying gaps in the sequence numbers of broadcast packets
that are received. According to an alternative embodiment of

10

15

25

30

40

45

55

16

the invention, when such data loss is detected, node 202 can
the missing data from nodes to which it has existing inbound
connections and that have received the packet. By way of
example, and not by way of limitation, a node can obtain a
missing packet by requesting the missing packet from one or
more nodes to which the node has existing inbound connec-
tions and that are likely to have received the missing packet.
For example, node 202 may send such a request to any of
upstream nodes 228, 230, 232 or 234 via existing inbound
connections. The request need not be made to node 224
because its key value is located beyond the key value range
between the broadcast source node 226 and node 202, which
means that the node 224 does not have the data yet. Node 202
can determine whether a given upstream node is beyond the
key value range between itself and the broadcast source 226 if
the broadcast packets include data identifying broadcast
source node 226 as the originator of the broadcast message.

Nodes 228, 230, 232, and 234 might not have the missing
data possibly because the packet loss has occurred in inbound
connections to these nodes. Even if one of these nodes has the
data, the node may not have sufficient bandwidth to send the
missing data to node 202. Therefore, node 202 may send a
query to each of these nodes to determine if any of them has
the missing data and also available bandwidth to send the
missing data. When node 202 receives a response indicating
that the responding node has the data and is able to send it,
node 202 can request the data from the responding node.
Optionally, the node may choose to wait for multiple
responses for a specific time period to choose the best node
from which to download the missing data, e.g., in terms of
available bandwidth and/or measured round trip time (RTT).

The above process takes one RTT for node 202 to send the
query and receive the response and another RTT for node 202
to request and receive the missing piece. The latency of
2*RTT may not be acceptable considering the overall latency
each node would experience. In order to reduce the latency,
nodes 228, 230,232, and 234 can regularly and proactively
send to node 202 information identifying a set of ranges of
sequence numbers for packets that these nodes have stored in
memory, e.g., in a data buffer. Node 202 can similarly trans-
mit information to its finger nodes identifying a set of ranges
of sequence numbers for packets that node 202 has stored in
memory. This way, one RTT for the initial query/response
transaction can be eliminated. It is assumed here is that the
amount of data need to transmit such information is very
small, e.g., compared to a broadcast message, and transmis-
sion of such data does not significantly affect uplink, or down-
link bandwidth.

The general method for recovery of lost data in an overlay
broadcast can be summarized with reference to FIG. 7B and
FIG. 7C. Specifically, from the point of view of a node
requesting missing broadcast data a method 700 may proceed
as follows. A node receiving overlay broadcast data may
detect a missing packet as indicated at 702. As discussed
above, the node can identify a missing packet if each packet
includes a unique sequence number. Upon detecting the miss-
ing packet, the node may attempt to find an upstream node
having the missing packet, as indicated at 704. As discussed
above, the node can find an upstream node having the missing
packet either by sending queries to upstream nodes to which
the node has existing inbound connections and that are likely
to have the packet. Alternatively, the node may receive regular
updates from the nodes to which it has inbound connections
regarding the packets that they have buffered. Upon finding
an upstream node having the missing packet the node may
obtain the missing packet from the upstream node as indi-
cated at 706. By way of example, the node may obtain the

US 9,100,933 B2

17

missing packet by requesting for the missing packet from a
selected upstream node that is known to have the packet. The
node may consider factors such as available bandwidth and
round trip time in selecting an upstream node from which to
request the missing packet.

A node receiving a request for a missing overlay broadcast
packet may implement a method 710 as illustrated in FIG. 7C.
Specifically, the node may buffer broadcast packets that have
been received as indicated at 712. The received packets can be
buffered for a finite period of time before and after they are
consumed. The node that receives and buffers the packets can
identify the buffered packets to its finger nodes, as indicated
at 714. Specifically, the node can maintain a list of sequence
numbers for buffered packets and respond to a request for a
specific packet from a downstream node by referring to the
list or by simply transmitting the list. The list can be in the
form of a range of sequence numbers for buffered packets.
Alternatively, the node can identify the buffered packets to
finger nodes by regularly sending the list of buffered packets
or range of sequence numbers of buffered packets to its finger
nodes. If the node receives a request 715 for a specific buff-
ered packet 717 from one of its finger nodes the node can send
the requested packet, as indicated at 716.

It is noted that the missing packet recovery method 700 and
missing packet provision method 710 may be implemented in
conjunction with overlay broadcasting, e.g., as described
above with respect to FIG. 3 and/or FIG. 5. Furthermore these
methods may be implemented in conjunction with overlay
broadcasting as described in U.S. Pat. No. 7,468,952.

As mentioned above, obtaining the missing data may take
1 to 2 RTTs. This indicates that it is desirable for node 202 to
have enough buffer in memory to allow the latency before it
consumes the data, e.g., by displaying the broadcast on a
display. Similarly, all nodes in the overlay 200 should be
prepared to receive a request for retransmission of past data,
which means, each node must keep data that has already been
consumed in a buffer in memory for a while.

FIG. 7D, illustrates an example of a buffer 720 containing
buffered packets 724. The buffer 720 may be implemented as
a computer readable memory. By way of example, and not by
way of limitation, the memory may include any kinds of data
storage such as RAM, hard drive, flash memory, and the like.
An overlay broadcast packet 722 is received in the buffer as
indicated at 721. Packets that are received can be stored in the
buffer 720 for some period of time before they are consumed,
e.g.,used by adisplay device, as indicated at 723. Packets can
remain in the buffer for some additional period of time after
they have been consumed in order to keep them available for
other nodes. Since the node may continually receive overlay
broadcast data and buffer space is typically limited at some
point packets will have to be cleared from the buffer as indi-
cated at 725 to make room for new packets.

FIG. 8 illustrates a set of information processing devices
suitable for implementing an overlay network 800 suitable for
broadcasting messages according to an embodiment of the
invention. The nodes of overlay network 800 may include
laptop or portable computers 805; server computers 810;
desktop computers and workstations 815; mobile computing
devices 820 such as mobile phones, personal digital assis-
tants, portable digital media players, and portable or handheld
game consoles; and home entertainment devices 825 such as
video game consoles, digital media players, set-top boxes,
media center computers and storage devices. The overlay
network 800 can include any number of each type of device
independent of the number of devices of other types. Each
device may implement the functionality of one or more nodes
of'the overlay network 800. For each device, the functionality

10

15

20

25

30

35

40

45

50

55

60

65

18

of one or more nodes may be implemented in hardware,
software, firmware, or any combination thereof. Node func-
tionality in software may be a part of an application, a library,
an application programming interface, and/or an operating
system. Furthermore, each node of the overlay network 800
may be connected with other nodes via any type of wired or
wireless network connection, incorporating any type of elec-
trical, optical, radio, or other communications means. The
overlay network 800 may encompass both local-area net-
works and wide-area networks, such as the Internet.

In a further embodiment, some devices of the overlay net-
work 800 may have restricted capabilities. For example, only
a limited subset of nodes of the overlay network 800 may be
allowed to initiate broadcast messages. The remaining nodes
may only be permitted to forward and/or process broadcast
message. In still a further embodiment, all or a subset of the
nodes of the overlay network 800 are capable of authenticat-
ing broadcast messages. Such a configuration may be imple-
mented to prevent the spread of unauthorized broadcast mes-
sages. Upon receiving a broadcast message, a node can first
determine whether the broadcast message is authentic, for
example by checking a cryptographic signature. If the broad-
cast message is authentic, it is processed and potentially
forwarded to other nodes as described above. Otherwise, the
broadcast message may be ignored.

FIG. 9 illustrates a set of information processing devices
suitable for implementing an overlay network 900 according
to an embodiment of the invention. The overlay network 900
enables processors connected over a data bus 901 to send and
receive broadcast messages in an efficient manner. The data
bus 901 may use any electrical, optical, or other type of data
communication means capable of carrying data within and/or
between integrated circuits.

The overlay network 900 typically includes a plurality of
processors 905, 910, 915, and 920. In further embodiments,
overlay network 900 may include thousands or millions of
processors. Each processor may be a microprocessor, micro-
controller, system on a chip processor, digital signal proces-
sor, application specific integrated circuit (ASIC), program-
mable logic device and/or any other type of information
processing device. Each processor may further include one or
more processing units capable of independently executing
sequences of information processing instructions or process-
ing information according to a fixed algorithm. Each proces-
sor may include local data storage as well as access to com-
mon or shared data storage.

FIG. 10 is a block diagram illustrating the components of
an information processing device suitable for implementing a
peer node of an overlay network according to an embodiment
of'the present invention. By way of example, and without loss
of generality, the information processing device may be
implemented as a computer system 1000, such as a personal
computer, video game console, personal digital assistant, or
other digital device, suitable for practicing an embodiment of
the invention. The computer system 1000 may include a cen-
tral processing unit (CPU) 1005 configured to run software
applications and optionally an operating system. The CPU
1005 may include one or more processing cores. By way of
example and without limitation, the CPU 1005 may be a
parallel processor module, such as a Cell Processor. An
example of a Cell Processor architecture is described in
detail, e.g., in Cell Broadband Engine Architecture, copyright
International Business Machines Corporation, Sony Com-
puter Entertainment Incorporated, Toshiba Corporation Aug.
8, 2005 a copy of which may be downloaded at http://cell.s-
cei.co.jp/, the entire contents of which are incorporated herein
by reference.

US 9,100,933 B2

19

A memory 1006 is coupled to the CPU 1005. The memory
1006 may store applications and data for use by the CPU
1005. The memory 1006 may be in the form of an integrated
circuit, e.g., RAM, DRAM, ROM, and the like). A computer
program 1003 may be stored in the memory 1006 in the form
of instructions that can be executed on the processor 1005.
The memory 1006 may store broadcast messages 1004 that
have either been initiated by the program 1003 or received
from other nodes. The memory 1006 may also contain a finger
table 1007. The finger table contains information regarding
the keys for which the node 1000 is responsible. These keys
include data keys associated with data, e.g., shared files that
may be stored in the storage 1015. In addition, the finger table
1007 may include node keys associated with other peer
nodes. Such nodes may include a subset of the nodes in the
overlay network 200 that the peer node 1000 may be able to
contact directly via peer-to-peer connection. The data keys
may be arranged into key groups, with each key group being
associated with a different node key.

The program 1003 can determine an available uplink band-
width and which subset of nodes corresponding to key values
in the finger table 1007 should receive a copy of the message
1004 based on the available uplink bandwidth and what End
ID to send to each node along with a copy of the message
1004. By way of example, and not by way of limitation, the
program 1003 may be part of a video game program that
allows users of different peer devices to participate in a game
online over a network. Such participation may include the
above-described spectator mode. The instructions of the pro-
gram 1003 may be configured to implement, amongst other
things, an overlay broadcast method, e.g., as described above
with respect to FIG. 3 and/or an alternative broadcast method
that uses finger table optimization, e.g., as described above
with respect to FIG. 5. In addition, the program 1003 may
include instructions to implement recovery of lost broadcast
packets from upstream nodes, e.g., as discussed above with
respect to FIG. 7B. Furthermore, the program 1003 may
include instructions to implement provision of packets to
finger nodes, e.g., as discussed above with respect to FIG. 7C.
The memory 1006 may include a buffer 1008 configured as
discussed above with respect to FIG. 7D to facilitate recovery
and/or provision of lost packets. Although the buffer 1008 is
depicted as being implemented in the memory 1006, the
buffer may alternatively be implemented in the storage device
1015 or in some other storage location that is accessible by the
node 1000.

The computing system 1000 may also include well-known
support functions 1010, such as input/output (I/O) elements
1011, power supplies (P/S) 1012, a clock (CLK) 1013 and
cache 1014. The system 1000 may further include a storage
device 1015 that provides non-volatile storage for applica-
tions and data. By way of example, the storage device 1015
may be a fixed disk drive, removable disk drive, flash memory
device, tape drive, CD-ROM, DVD-ROM, Blu-ray,
HD-DVD, UMD, or other optical storage devices.

One or more user input devices 1020 may be used to
communicate user inputs from one or more users to the com-
puter system 1000. By way of example, one or more of the
user input devices 1020 may be coupled to the system 1000
via the I/O elements 1011. Examples of suitable input device
1020 include keyboards, mice, joysticks, touch pads, touch
screens, light pens, still or video cameras, and/or micro-
phones. A network interface 1025 allows the computer sys-
tem 1000 to communicate with other computer systems via an
electronic communications network 1027. The network inter-
face 1025 may include wired or wireless communication over
local area networks and wide area networks such as the Inter-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

net. The system 1000 may send and receive data, e.g., broad-
cast messages, in the form of one or more message packets
1026 over the network 1027.

The computer system 1000 may further comprise a graph-
ics subsystem 1030, which may include a graphics processing
unit (GPU) 1035 and graphics memory 1040. The graphics
memory 1040 may include a display memory (e.g., a frame
buffer) used for storing pixel data for each pixel of an output
image. The graphics memory 1040 may be integrated in the
same device as the GPU 1035, connected as a separate device
with GPU 1035, and/or implemented within the memory
1006. Pixel data may be provided to the graphics memory
1040 directly from the CPU 1005. Alternatively, the CPU
1005 may provide the GPU 1035 with data and/or instructions
defining the desired output images, from which the GPU 1035
may generate the pixel data of one or more output images. The
data and/or instructions defining the desired output images
may be stored in memory 1010 and/or graphics memory
1040. In an embodiment, the GPU 1035 may be configured
(e.g., by suitable programming or hardware configuration)
with 3D rendering capabilities for generating pixel data for
output images from instructions and data defining the geom-
etry, lighting, shading, texturing, motion, and/or camera
parameters for a scene. The GPU 1035 may further include
one or more programmable execution units capable of execut-
ing shader programs.

The graphics subsystem 1030 may periodically output
pixel data for an image from graphics memory 1040 to be
displayed on a display device 1050. The display device 1050
may be any device capable of displaying visual information in
response to a signal from the computer system 1000, includ-
ing CRT, LCD, plasma, and OLED displays. The computer
system 1000 may provide the display device 1050 with an
analog or digital signal. By way of example, the display 1050
may include a cathode ray tube (CRT) or flat panel screen that
displays text, numerals, graphical symbols orimages. In addi-
tion, the display 1050 may include one or more audio speak-
ers that produce audible or otherwise detectable sounds. To
facilitate generation of such sounds, the system 1000 may
further include an audio processor 1055 adapted to generate
analog or digital audio output from instructions and/or data
provided by the CPU 1005, memory 1006, and/or storage
1015.

The components of the computer system 1000, including
the CPU 1005, memory 1006, support functions 1010, data
storage 1015, user input devices 1020, network interface
1025, and audio processor 1055 may be operably connected
to each other via one or more data buses 1060. These com-
ponents may be implemented in hardware, software or firm-
ware or some combination of two or more of these.

According to another embodiment, instructions for carry-
ing out broadcasting in a peer-to-peer network may be stored
in a computer readable storage medium. By way of example,
and not by way of limitation, FIG. 11 illustrates an example of
a computer-readable storage medium 1100 in accordance
with an embodiment of the present invention. The storage
medium 1100 contains computer-readable instructions stored
in a format that can be retrieved and interpreted by a computer
processing device. By way of example and not by way of
limitation, the computer-readable storage medium 1100 may
be a computer-readable memory, such as random access
memory (RAM) or read only memory (ROM), a computer
readable storage disk for a fixed disk drive (e.g., a hard disk
drive), or a removable disk drive. In addition, the computer-
readable storage medium 1100 may be a flash memory
device, a computer-readable tape, a CD-ROM, a DVD-ROM,
aBlu-Ray, HD-DVD, UMD, or other optical storage medium.

US 9,100,933 B2

21

The storage medium 1100 contains broadcast instructions
1101 configured to broadcasting in a peer-to-peer overlay
network upon execution by a processor in a suitably config-
ured node on the network. The broadcast instructions 1101
may be configured to implement broadcasting in accordance
with the methods described above with respect to FIG. 3 or
FIG. 5. In addition, the broadcast instructions 1101 may
optionally include bandwidth determination instructions
1103 that determine an available uplink bandwidth for a node
when executed by the processor.

The broadcast instructions 1101 may also include copy
number determination instructions 1105 for determining a
number of copies of a broadcast message to send to finger
nodes when executed by the processor. These instructions
may take into account an available uplink bandwidth deter-
mined by the bandwidth determination instructions 1103.

The broadcast instructions 1101 may also include instruc-
tions 1107 that determine recipients for copies of a message
and End ID’s to send to these recipients when executed by the
processor. These instructions can be configured to take into
account the number of copies determined by the copy number
determination instructions 1105 as well as the key values
stored in a finger table whose contents are accessible to the
processor.

The broadcast instructions 1101 may optionally include
instructions 1109 for querying other nodes, such as key nodes
and neighbor nodes to determine uplink bandwidth available
to these other nodes.

The broadcast instructions 1101 may optionally include
instructions 1111 configured for swapping key values with
other nodes. These instructions may take into account infor-
mation about uplink bandwidth available to other nodes, e.g.,
as determined by execution of the instructions 1109 for que-
rying other nodes.

In some embodiments, the instructions 1101 may include
instructions 1113 for receiving or initiating a broadcast mes-
sage. By way of example, and not by way of limitation, these
instructions may be configured to implement part of a spec-
tator mode of an online video game when executed, as dis-
cussed above. Specifically, the instructions 1113 could be
configured to implement the “virtual camera” function on a
node that acts as an agent. Alternatively, the instructions
could be configured to identify message received packets as
being associated with the spectator mode and handling them
appropriately, e.g., by determining the size of the broadcast
message and placing them in a queue for transmission.

In other embodiments, the instructions 1101 may include
instructions 1115 for recovering missing broadcast message
packets. By way of example, and not by way of limitation,
these instructions 1115 may be configured to implement
recovery of packets missing from broadcast messages
received by a node, e.g., as described above with respect to
FIG. 7A and FIG. 7B. Alternatively, these instructions 1115
may be configured to facilitate provision of broadcast packets
to other nodes, e.g., as described above with respect to FIG.
7A and FIG. 7C.

Although the present invention has been described in con-
siderable detail with reference to certain preferred versions
thereof, other versions are possible. For example, although
certain embodiments are described in which the overlay is
described as a Chord overlay, embodiments of the invention
may include implementations in which the overlay is imple-
mented according to some other protocol. Therefore, the
spirit and scope of the appended claims should not be limited
to the description of the preferred versions contained herein.

10

15

20

25

30

35

40

45

50

55

60

65

22

Instead, the scope of the invention should be determined with
reference to the appended claims, along with their full scope
of equivalents.

All the features disclosed in this specification (including
any accompanying claims, abstract and drawings) may be
replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus,
unless expressly stated otherwise, each feature disclosed is
one example only of a generic series of equivalent or similar
features. Any feature, whether preferred or not, may be com-
bined with any other feature, whether preferred or not. In the
claims that follow, the indefinite article “A”, or “An” refers to
a quantity of one or more of the item following the article,
except where expressly stated otherwise. Any element in a
claim that does not explicitly state “means for” performing a
specified function, is not to be interpreted as a “means” or
“step” clause as specified in 35 USC §112, 6. In particular,
the use of “step of” in the claims herein is not intended to
invoke the provisions of 35 USC §112, Y6.

The reader’s attention is directed to all papers and docu-
ments which are filed concurrently with this specification and
which are open to public inspection with this specification,
and the contents of all such papers and documents incorpo-
rated herein by reference.

What is claimed is:

1. In a peer node coupled to a plurality of other peer nodes
in an overlay network, a method of processing a broadcast
message in the overlay network, the method comprising:

a) receiving the broadcast message at the peer node from
one of the other peer nodes that is upstream from the peer
node, wherein the broadcast message includes a plural-
ity of packets;

b) identifying packet missing from the broadcast message;

¢) identifying an upstream node having the missing packet,
wherein the peer node has an existing inbound connec-
tion with the upstream node; and

d) obtaining the missing packet from the upstream node.

2. The method of claim 1, wherein each packet in the
plurality of packets includes a unique sequence number of a
known sequence and wherein b) includes identifying a miss-
ing sequence number in the plurality of packets.

3. The method of claim 1, wherein ¢) includes sending a
request for the missing packet to one or more nodes upstream
of'the peer node to which the peer node has inbound connec-
tions.

4. The method of claim 1, wherein ¢) includes periodically
receiving an update from one or more nodes upstream of the
peer node to which the peer node has inbound connections,
wherein each update identifies a range of packets that are
available from the node that sent the update.

5. The method of claim 1, wherein d) includes requesting
the missing packet from a selected upstream node that is
known to have the packet.

6. The method of claim 5, wherein the peer node takes
available bandwidth and/or round trip time into account in
selecting an upstream node from which to request the missing
packet.

7. In a peer node coupled to a plurality of other peer nodes
in an overlay network, wherein the plurality of other peer
nodes include in or more finger nodes to which the peer node
has outbound connections and one or more upstream nodes to
which the peer node has inbound connections, a method of

US 9,100,933 B2

23

processing a broadcast message in the overlay network, the
method comprising:

a) receiving the broadcast message at the peer node from
one of upstream nodes that is upstream from the peer
node, wherein the broadcast message includes a plural-
ity of packets;

b) buffering a subset of the packets of the plurality packets
in a buffer for a finite period of time before and after the
peer node consumes the packets; and

¢) identifying one or more of the buffered packets to one or
more of the finger nodes.

8. The method of claim 7, wherein ¢) includes maintaining
alist of sequence numbers for buffered packets and respond to
a request for a specific packet from one of the finger nodes.

9. The method of claim 7 wherein c¢) includes regularly
sending information identifying buftered packets to the finger
nodes.

10. The method of claim 7, further comprising:

d) sending one or more of the packets in the buffer to one of
the finger nodes in response to a request from the finger
node for the buffered packet.

11. An apparatus for implementing a peer node, compris-

g,

10

15

20

24

a processor;

a memory coupled to the processor; and

instructions embodied in the memory for execution by the
processor, wherein the instructions are configured to,
when executed, implement a method of processing a
broadcast message in an overlay network in which the
peer node is coupled to a plurality of other peer nodes,
the method comprising:

a) receiving the broadcast message at the peer node from
one of the other peer nodes that is upstream from the peer
node, wherein the broadcast message includes a plural-
ity of packets; and either

b) identifying packet missing from the broadcast message;
identifying an upstream node having the missing packet,
wherein the peer node has an existing inbound connec-
tion with the upstream node; and obtaining the missing
packet from the upstream node; or

¢) identifying packet missing from the broadcast message;
identifying an upstream node having the missing packet,
wherein the peer node has an existing inbound connec-
tion with the upstream node; and obtaining the missing
packet from the upstream node.

#* #* #* #* #*

